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Abstract

One of the mwost interesting guesticns in the
etudy of human problem solving is the nature of
the interaction between a prcblem's intrinsic
structure and 2 problem solver's strategles or
benhaviors. The present paper suggests the use of
techniques developed in research in mechanical
problem solving to assist in formulating and
illuminating this guestiocon. The authors also seek
to develop a relationship between artificial
intelligence methods and 'structuralist' theordes
of cogniticon by relating groups of symmelry txans-—
formations and ‘conservaticn' operations.

Section I: Introduction

One of the most interesting questions in the
psychology of prohlem sclwing is the nature of the
interaction between a problem's intrinsic struc-
ture ard the strategies or behaviors emploved in
attempting to seclve the problem. Several studies
have recently appeared addressing this subject:

1) the learning of mathematical structures such as
+he Klein groun or the cyclic group of order four,
Branca & Kilpatwick {1], 2} the study of analogy
and transfer in related problem selving situations,
Reed, Ernst, & Banerii [2], Egan & Greno in [3],

3} the develorment of mechanical theorem provers
both in eguation solving, Bundy [4], and in ele-
mentary gecmetry, Gelernter [3] and Goldstein [e].

This research, although from diverse points of view,

shares-a ccmmon interest: understanding the
effects of problem structure — for -instance, a
problen's pessible subproblem and symmetry decam—
positions — on efficient problem solving.

This papsr suggests technigues that may
further aid in formulating and illuminating this
question. More ambitiocusly, the authors seek to
develop a relationship between artificial intelli-
gence methods ard Piagetian or 'structuralist'
theories of cognition.

Nilsson [7] has defined the state svace rep~
resentation of a problem as the set of distinguish~
able problem configuraticns or situaticns together
with the permitted moves or steps Ifrom cne proklen
situation to another. Thus the state-space ¢f &
problem consists of an initial state, together with
all the states that may be reached from The initial
state by sucgessive legal moves in the problem.

One or more of these successor states are class-
ified as goal states. The state space of & prob-
lem, represented as a non-directed graph, will be
unigue only if the problem's description clearly
deliniates its initial and goal state(s}) .and its
set of legal moves Egan & Greno [3J. Finally,
the concept of the state space of a problem can be
generalized to the analogous structure for an
N-playver gawe, i.e., the game tree or graph.
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Banerji I8], Banerji & Ernst [9] and other
researchers have offered mathematical descriptions
to characterize state spaces. This ‘state space
algebra' allews such concepts as problem compar—
ison, decoemposition, and extension to be well de~
fined and also allows problem solving studies in
the areas of prcblem analogy, transfer, and gen—
eralization to be extremely precise.

In early artificial intelligence research
both Gelernter's Geometry Theorsmm Prover [5] with
its use of the symmetries within the syntax of a
problem's description, as well as Newell, Shaw
and Simon's General Problem Solver [10], with its
ptilization of a problem’s possible subproblem
decompositions, affirm the need for as corplete as’
possible exploitaticn cf a problem's structure for
effective problem sclving. Again, in plan
formation,Sacerdoti [111 uses ABSTRIPS to focus on
the impertant features cf a problem's structure
and to ignors the unnecessary detail that leads
STRIPS to combinatorial problems.

Newell and Simon's later work [12] permits
in principle a very detailed interpretation of an
individual's problem solving 'protocol’ as steps
in information processing. dowever, as the
iproblem space’ for this research varies Erom
subject to subject for each individual problem 1t
also lerds to their model a definite post hoc
character. Since no final commitment concerning
the structure of the ‘problem space’ is made until
after the probiem solving is observed, the poten-
tial for predicting the effects of a problen's
structure on a subject's preblem selving behavior
seems to be lacking.

In the next section two ideas are intrcduced.
First, we assert a fundamental correspondence be- ’
tween conservation operations and symmetry trans-
formaticns. In the sense of Piaget, a conserv-
ation operation is the ability of a problem solver
to rezpond that two different states of the en-
vircnment are eguivalent when they are functicon-
ally the same, that is when they both possess the
seme value for some psrceptual or cognitive vari-
able. For example, 17 is said to be equivalent
to 22 modulo 3, since both have the same remainder
on division by 3. In general, a symmetry trans-—
formation is a mapping which carries cne problem
state into another in such a way as to leave un-
crangsd important observahle features. In the
everyday sense of the word symmetry these features
are geometric, for example, the transfoxmatimn
which changes a particular configuration of objects
inte its '‘mirror image' may leave the appearance
of the configuratiorn unchanged. We are interest-
ed, however, in a moZe general notion of syrmetry,
for sxample, symmeitry within a problen's descrip-
tion znd underlying preblem structure, as well as
in the wmere readily appsrent gecmetric syrmetries.



The second idea pursued in this section is
that in problem sclving, a subgoal and subproblem
Gecomposition of a preblem may govern a prcoblem
solver's kehavicr even when he or she is not
consclously sesking to arrive at that particular
subgeal, and despite the fact that the infra-
structure of subproblem's within the main problem
may not on the surface be apparent. Furthermoré,
given a subproblem deccmposition, one kind of
symmetry whose effect may be explored is the pres-
ence In the preoblem of subproblems of identical
(isomorphic) structure.

In the third secticn additional concepts con-
.cerning a problem's state space are rigorcusly
defined, and several hypotheses offered concerning
effects of problemr structure cn subject's paths
through the state space, such as a predominance of
goal and subgoal directed paths, and an increased
likelihood of ceongruent paths through isomoxrphic
subproblems.

In the fourth section, the Towex of Hanol
problem (Nilsson [7]) and the Tea Ceremony problem
(BEayes & Simon ‘in [3]) are usaed to illustrate the
nmain ideas developed. Finally, scme suggestions
for further experimental investigation are pro-
posed. '

Section II: (A} Consexvation Qperations and

Symmetry Transformations

(B) Subproblem Decompositions

(A} In Tic-Tac-Toe a player, say X, is said to
*fork' his opponent when he places his X in such a
position on the board that.l) there are as a yesult
two possible 'winning moves' for X, and 2) 0 is
able, in the next move, to block only one of these
twinning moves'! There are several different
*forking' positions possible on the Tic-Tac-Toe
board and these relationships are c¢onserved or in-
variant over all rotaticns and reflections of the
gam2 board. Thus it can be said that there is a
comservation or functiconal eguivalence among the
different ‘forking’ situaticns. It is also poss-
ible to construct symmetry transformations of cne
Yforking' situation onto any other. The authors
would like to establish a logical ecquivalence be-—
tween conservaticn operaticns and grours of sym- |
‘metry transformations for characterizing this and
cther problem seolving situations, {Goldin & Luger
;[13] Luger [141).

'

The group is the paradigm in mathematics of
the methodolegy which has besn termed ‘structur-
alist! (Piaget [15]). This methecdology has been
applied to fields of study as diverse as anthro-
pology, linguistics,. and psychology., as well as to
mathematics [15]. According to Piaget a struct-
ure in the most general sense is a system or set
within which certain relations or operations have
been defined, embodying .the concepts of wholeness,
transformation, and self-regulation. For example
a system of kinship ceonstitures a structure in
anthropology as does & group in mathematics. In
Piagetian developmental psychelegy, the conser-
vation cperations - conservation of number, volume,
quantity, etc. - are transfcrmations which repre-
sent the cognitive structures assumed to underlie
certain patterns of behavior. Acguisition of
these conservation operations by children defines
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sequential stages in thier cognitive development.

In view of the parallel fundamental roles
played by group structures in mathematics and
cognitive structures in developmental psycholegy,
it is natural to try to lock at the acqguisition
of Piagetian conservation coperations as equivalent
to the acquisition of a group of symmetry trans-
formations.

For an chservable (such as number, guantity,
ete.) to be conserved means in fact that when a
given state 1s somehow transformed into an altered
state, the value of the observable is unchanged
frem its initial value. Cf course, for the seccond
state to be regarded as different from the first
state at all, there must be at least one cther ob-
servable which does change in value under the
transformation, and which is fot conserved by the
transformaticn. A symmetry transformatior may be
defined, then, as a one-to-cone mapping from the set
of states ontec itself which leaves invariant the
specified relationships amcng the states. Any
collection of such symmetry transformations gener-—
ates a symmeiry group.

Let us say that a certain symmetry group G
conserves a given set of observables when for each
state S is the system, all states which may be ob~
tained from S by applying symmetxy transformations
from G have exactly the seme values of the spec-
ified cobservables. The maximal symmetry group
possessing this property for a given -set of observ-
ables is the group containing every symmetry trans<
formation which preserves the values of the spec-
ified observables.

To say that a subject 'conserves number’, for
example, means that no matter how a given state of
the enviromment is transformed into an altered
state by simply moving the objects within the en-
vironment arcund, the value of the cbservable
‘number' - according to the subject's report - re-
mains unchanged. Thus, a group of cng-to-one.
surjective maprings from a region of R onto itself,
maps the set of states onto itself in such a way
that a state specified by n points continues to be
specified by n points after it is transformed, and
so has the same value of the cbservable 'number®.

It is not difficult to see that this set of mappings
f£its the definition of a symmetry group conserving
that ebservable. Thos, the-abikity to conssrve
number may be seen to be logically equivalent to

the acquisition of the stxucture of a symmetry
group, that is, the ability to undo (invert) any
rearrangement transformation and to catenate any
two such transformations.

. It .may be hypothesized that stages in the
acquisitien of such a symmetry group structure
actually correspond to the acquisition of partic-
ular subgroups cf this symmetry group. For

-example, a child might at some time respond con-

sistently that the number of objects is unchanged
when a configuration is mexely translated a cer-
tain distance in space, without its having been .
spread out or otherwise rearranged. If this wexe
to occur we would say that the subgroup of K con-
taining all translations had been acquirxed as a
symmetry structure. Verification of this hyro-
thesis would further demonstrate the usefulness of
the conservation operation/symmetry group corres-



pondence.

In arguing for the reformulation of conserva-
tion operations in terms of symmetry groups. it
seems natural to cite examples of systexs in which
the symmetries are familiar, but the identification
of conserved guantities may he cumbersome. Many
examples drawn frem problem solving turn out to be
easier to describe in terms of symmetry groups than
in terms of quantities conserved by the transform-
ations in those groups. For example, in Tic-Tac-
Toe, there are nine distinguishable states which
can be reached by the first mecve of the first play-
er., However, mcdulo the rotaticn cr reflection
symmetry, only three distinguishable states exist.
In constructing the state space representation for
Tie-Tac~Toe, one could choose to represent all the

‘distinguishable states of the system, and 50 obtain
a very large state space; or one could use the
much smaller state space obtained by regarding
those states conjugate by symmetry as eguivalent.
This later choice corresponds to reducticn of the
state space representation medulo its symmetry
transformations.’

In studying human problem solving, we nust
take intoc account the possibility that the sub-
ject's behavior does not initially reflect all the
symmetry which is actually present. Therefore,
to map the subject's behavior falthfully, we
should begin with the expanded state space repre-
sentation, i.e., the state space containing all
possible legal states of the problen. This ex-
panded state space (and its formal properties)
will be constant across all subjects solving this
problem and thus make possible more than a post

~hee analysis (p.2). -

. T{ic-Tac-Toe alsc provides an example of a
game 1h which the rotation and reflection symmetry
is easily recognized, but the corresponding con-
served guantities are cumbersome to define. One

such quantity might be the number of Xs in corner
squares, a number unchanged by the rotaticn cr re-
flection operations. Iumber Scrabble [I21, a
game isomorphic to Tic-Tac-Toe, may be described
as follows. The integers 1, 2, 3, ...., 9 are
written on a pad, and the two opposing players
take turns selecting single numbers. " Neither
player may select a number already taken. The
gozl is te cbtain any three numbexs which add up
to_exactly fifteen. The iscmerphism between this
game and Tic-Tac-Toe can be illustrated by placing
the integers 1 to ¢ in the Tic-Tac-Teoe grid in
such a way that each row, column, and diagonal add
to 15. A player txying to )
learn Number Scrabble would 41318
not have available the geo- 51511
metric symmetry presented
by the Tic-Tac-Toe grid. 21716
Without priocr familiarity
with the 'magic sguare',
a player would have to seek rules such as, 'If the
first piayer chcoses 5, then the second player has
to pick an even number to aveid losing’. Unbe-
knownst to the player, the relevant ‘observables'
are just those which are censerved by the Tic-Tac—
Toe symmetry — 'even numbers selected', 'odd num-
bers excluding 5', and so on.

"a "magic' square

Tic-Tac~Toe and Number Scrakbble illustrate
(2) that symmetries may be more convenient than
the guantities conserved by those symmetries for
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. space.

formulating the noticn Of eguivalence amnong STates,
(b} that symretries and conserved guantities are,
however, logically interchangeable, and (¢} that
the rules of a gare ray be reformulated in such a
fachicn as to make identification of the conserved
quantities easier or more gonvenient than the
characterizaticn of the symmetries.

Finally, the formal correspondence between a
group of eyrmetry transformations and the observ-
able quantities conserved by these sypmetry trans-
formations suggests that acquisition of symmetries
may be as fundamental to cognitive development as
is the acquisition of conservation operations.

Je have also seen how the presence of symmetry may
be represented in the state space of a problem or
game.

(8) A second feature of a problem which is amen-
able to study utilizing the state space is a prob-
lem's infrastructurs of subproblems. It has been
commonly held that an effective problem solving
technigue is to establish subproblems or subgoals
whose solution or attairment might assist in the
conquest of the main problem. Polya [17] suggests
such an appréach in discussing his problem solving
'heuristics', it forms the basis of Newell, Shaw,
& Simon's General Problem Solver [10], and suggests
to Nilsson [6, p 801 one way to reduce the state
But to establish rigorously the xolke of
such identification of subgoals in human proklem
solving behaviour remains difficult and psychol-
ogists are divided even over the assumption of
'goal-directedness' (Kirble [17] sec. 13]. Char-
acterization of subproblems as subspaces of the
problem's state space should assist.in investigat-
ing the behavieral consequences of a gsubpreblem
decomposition by the probklem solver. One may
further discuss, independently, the group of sym-
metry transformations of a subproblem, or explere
the effects of the presence in a problem of dif-
ferent subproblems having identical {isomorphic)
structure.

The above considerations suggest the utility
of mapping the problem solver's steps as paths
through the state space representation of the
problem, BEased con the formal properties of the
specific problem's state space, such as its sym~
metry and decomposition into subproblems, hypo-
theses can be formulated which predict the efifect
of this structure on the paths generated by the
problem solver. Then the door is open to the
development and empirical test of general algorith-
mic or mechanical procedures that might replicate
the properties of the paths generated by human
problem sclvers. The decision to represent proh-—
lem solving behavior as paths throuch the state
space of the problem is furthexr motivated by the
desire to make precise the data which needs to be
texplained' by a theory of human problem sclving.

In practice it may not always be easy to rep-
resent behavior in this fashicn, since the unigu-
ness of a problem's state space representation
reiies on the preciseness of the problem's state-
ment . Further, & problem solver's sroduction of
paths depends on his or her ability to discriminate
among the perceptual or cognitive variables which
characterize the states and legal moves of the
problem. The best experimental situation then, is
a problem whose states correspond to different
discrete situations of an actual physical device,



such as Tic-Tac-Tce, N-pile NIM, or the Tower of
Hanol and Tea Ceremony problenms tc be discussed
in secticn feur. Other available rmeans for re-
cording a subiect's behavior as a succession of
states gntered may include recordings of oral
comments, written notes, or even gestures and eye
movements {Bartlett [19], Newell & Simon [12]1, and
Young [191).

{a) Definitions and

- Section III:

(B) General Hypctheses

{A) Before procesding with further discussion,
definiticns are given for the concepts central to
the present approach. These definiticns are
based on and expanded frcm theose given by MNilsson
[7). The state space of a problem is the set of
distinguishable situations or states of the prob-
lem, together with the permitted transitions or

. moves from one state to another. The proklem
must specify an initial state and cne or mere geal
states, and so the state space may be visualized
as a directed graph (Figure 2).

A subspace of the state space is a subset of
the states, tcgether with the permitted transitions
which obtain between these states in the subset.

A subproblem is a subsrace of the state space—with ™
its own initial and subgoal state(s). For a sub-
problem it is reguired that if the initial state
"is not the initial state of the preblem, it can be
entered from a state outside the subspace; and if
a subgoal state is not a goal of the main problem,
it can be used to exit from the subspace - i.e.,
to enter a.state of -the problem outside of the
subproblemn. There are coften many ways to de~
compose a particular preoblem intc subproblems,
which correspond to different choices of subspaces
within the state space.

Two problems (or subproblems) are said to be
isomorphic if and only if there is a bijective
mapping from the state space of the first onte the
state space of the second and: 1) the initial
state of the first problem is mapped conto the
initial state of the second, 2) the set of geal
states of the first problem is mapped surjectively
onte the goal states of the second, and 3) a trans-
ition from one state to another is permitted in
one—problem if and onty if~the corresponding trans—-
ition is permitted in the other. .

of the problem onto itself and is called a sym-
metry transformation or symmetry automeorphism.

The set of all the autcmorphisms of a problesm forms
a2 group undexr the binary coperaticn of composition
or the successive application of two automorphisms.
This group is called the symmetry group or auto—
nmorphisn group of the prcklem.

: The states of a problem may be distinguished
by wvirtue of having different discrete values for
a set of variables called okservables. Thase
observables, characterizing the proklem states,’
may refer to colox, position, or number, etc. An
cbhservable is said te be conserved by a group of
symmetry transformations, if and only if for any
state, the value of that okservable is unchanged
by any element of the group of transformaticns.

i An auﬁpmorphism of a problem is an isomorphism

Let § be a state of a problem, and corsider
the set of all states which can be obtained by
applying autcrorphisms or syrmetry transfcrmations
from a group G to S. This set of states is called
the orbit of § under the automorphism group G.

Two states are said to be conjugate modulo the
symnetyy group G if they are in the same orbit
under G.

The orbits within the state space form mutual-
ly disjoint equivalence classes of states. A new
and simpler state space may row he constructed
canonically by considering each equivalence class
zs a state in its own right, or. alternatively, by
selecting one representative state from each crbit.
The state space thus obtained is said to have been
reduced with respect to its symmetry grouvp G, or
reduced medule G. G may be the full autcmerphisn
group of the original state space, or any subgroup
thereof.

A path in the state space.of a problem is a
sequence of states Sl, 82' ...,S such that for

i=1, 2, ...,n-1 the pair S +S 4l

permitted transition of the problem. A solution
path for a problem is a path in which Sl is the

represents a

initial state and._sn..'j.s a .goal state, With Sys ...,

s neither initial nor geal states of the prob-
lem, Two paths within respective isomorphic prob-
lems are said to be congruent (modulco the isomor-
phism) if one path is tre image of the ctrer under
the isomcrphism. .

We have seen above that one way to reduce the
size of the state space is with respect to a group
of symmetry automorphisms of the preblem. A
second means of state space reduction is with re-
spect to the subproblem structure. The state
space may be described, albeit nonuniquely, as a
union of mutually disjoint subspaces, such that
for any ordered pair of subspaces, a transition
exists from a state in the first to a state in the
second. An entire subspace may thus be regarded
as a single state in the reduced state space, and
a transition is permitted from one subspace to
another whenever a transition does in fact exist
from a state in the one toc a state in the other.
Each subspace, now a state in the reduced state
space, becomes also a subproblem of the original

. preblem whenever a particular entry state is des-

ignated as 'initial', and any or all of its exit
states are designated as ‘goals’. We then say
that the state space has been reduced modulo its
subprocblen decomposition.

Finally, one may addraess the concept of a B
non-random or a goal-directed path within a problem
or subproblem. Roughly speaking, a non-random
path would differ locally =~ perhaps in the number
of 'turns' or ‘loops' - from random paths generated
through a preblem's state space representation. A
goal-directed path is a sclution path which does
not 'double back' on itself within the state space,
moving consistently 'towards' rather than 'away
from' the goal state, Criteria for defining
'loops', or 'doubling back', or 'distance from the
goal state’, etc., are for the present to he est-
ablished in the context of each specific problem
under consideration. While these criteria may




aiffer across problems of different structure,
they will remain constant across populations of
subjects solving a particular problem.

.

{(B) In problem solving it may be assumed that the
solver acts sequentially upon problenm situztions
{states) to gensrate successor $tates, & process
which can be cdescribed, as discussed above, by
means of paths through a state space represent-
ation of the problemn. Tt is nowhere suggested
that the problem solver ‘perceives' the state
space as an entity during problem solving. The
symmetry properties which have peen déiscussed are
formal properties of the state space, which may
{as in Tic-Tac-Toe) ©r may not (as in Number
Scratble) correspond to gecmetrical or perceptual
properties of the prcblem readily apparent to the
problem solver.

The -approach to this stage of research has
been to formulate hypotheses respecting the paths
genarated by problem solvers in the state space of
a problem. Such hypotheses 1) &are motivated by
the formal properties of the state space under
discussicn, and 2) represent the anticipated
effects of the problem structure in shaping prob-
lem solving behavior. Trne foliowing hypctheses
of a more-or-less general nature are suggested.

Hypothesis 1

(z) In sclving a proklem {or subproblem) the
subject generates nron-random, goal-directed paths
in the state space representation of the problem
(or subproblem), and {p) when sub-goal states are
attained, the path exits from the‘respective,sub—
problems.

EzEgthesis 2

; Tdentifiable 'episodes' occur during problen
‘solving corresponding to +he solution of various
subprcblems. That is, path segments occux during
. certain episodes which do rot constitute the
‘(direct) solution of a problem, but which do con-
‘gtitute the solution of the isomorphic subproblens
of the problem.

Hnothesis 3

The problem solver's paths through iscmorphic

‘snbproblems tend to be congruent.

'Exggthesis 4

Given a symmetry group G of automorphisms of
the state space of a problem, there tend to occur
successive path segments congruent modulo G in the
state space.

: It may be that the wvalidity of hypetheses 1
and 2 depends on the particular way that the state

space of the precblem is decomposed into subproblens

since such a decomposition is cften not unigue.
Eypothesis 4 (symmetxy acguisitien) is suggestive
of the 'insight' phenomenon which cnanges the
gestalt of the problem solver {Wertheimer [20])
—ard often plays an important role in the eventual
‘problem solutich.

These hypotheses are not o be regarded as a
definitive list, but rather as preliminary and
indicative of the kind of analysis possible of the

- effects of problem structure on the problem soivex's
behavior. If valid, these hypotheses would offer

(I

falrly general constraints on the properties which
mechanical models must display to sirulate human
preoblem solving.

Section IV: Two Problem Solving Studies
and Suggesticns for Turther Research

-

Let us seek to make the foregoing ideas more
concrete by considering two problems that have
been used for empirical investigation {Luger [14]1,
{211). The Tower of Hanol problem has been
extensively discussed in the literature {31 and
its state space -considered by Nilsson L71. It is
a patural problem to consider both because its
well defined state space has a rich subproblem
structure and tecause its state space possSesses
somewhat nore symmetry rhan is immediately ap-
parent in cthe croblem environment.

In the Tower of Hanol problem four concentric
rings (labelled 1,2,3.,4 respectively) are placed
in order of size, the largest on the bottesm, on
the first of three pegs labelled A, B, C); the
apparatus is pictured in Figure 1. The object of
the problem is to transfer all the rings from peg
A to peg ¢ in the minimum nurber of moves. only
one ring may be noved at a time, and no largex
ring may be placed over a smallter one R any peg.

Figure 1 (1 to r) The 4-ring Tower of Hanoi &
Tea Ceremony problems in their 'start' states.
aA,B,C,1,2,3,4 show the isomerphism relationship.

The Tea Ceremony, see Figure 1, is an
iscmorgh of the Tower of Hanoi. Three people = 2
host and an elder and younger guest ~ participate
in the ‘cerxemony. There-are four tasks they per-
form - listed in ascending order of importance:
feeding the fire, serving cakes, serving tea, and
reading poetry. The host performs all the tasks
at the start of the ceremonhy, and the tasks are
transferred back and Fforth arong the participants
until the eldest guest performs ail the tasks, at
which time the ceremcny is completed. There are
two constraints on the one-at-a-time tramsfer of
tasks: 1) only the least jmportant task a person
is perfomming may ke taken from him, and 2) no
perscn may accept a #ask unless it is less im-
portant than any task he is performing at the
time. The object of the Tea Ceremony game is to
transfer all the four tasks frem the host to the
elder guest in the fewest musher ofl moves. As
with the Tower of Eanodi, the subject attempts the
gane repeatedly, starting over again vhenevesr he
or she wishes until the rings are moved (or tasks
transferred) in the fewest possible number of
transitiocns.



In the isomorphic relationship between the
Tea Ceremcny and the Tower of Hanoi the people -
host, youth, and elder - correspond respectively
with pegs A, B, and C. The four tasks - feeding
the fire, serving cakes, serving tea, and reading
poetry - correspond respectively with rings 1, 2,
3, and 4. I¢ can be checked that the initial
state, goal state, and legal moves of the two
games correspond.

Figure 2 is the complete state space repre-
sentation of the Tower of Hanoi/Tea Ceremony prob-
lem. Each circle stands for a possible position
or. state of the ganes. The four letters label-
ling a state refer to the respective pegs {people)
on which the four rings (tasks) are lecated. For
example, state CCBC means that ring 1 (£ire}, ring
2 (cakes), and ring 4 (poetry) are in their propex
order on peg C (performed by the Elder). Ring 3
(tea) is on peg B (performed by the youth). A
legal move by the problem sclver always effects a
transition between states represented by neighbor-
ing circles in Figure 2. The solution path con-
taining the minimum number of moves consists of
the fifteen steps from ARAA to CCCC down the
right side of the state space diagram.

‘Figure 2
Tower of Hanoi/Tea Ceremony problen.
effect transitions between adjacent states.
Examples of subspaces are given.

The State Space Representation of the
Legal moves

The Tower of Hanci/Tea Ceremony has a natural
decomposition into nested subproblems.  For ex-
ample, to solve the 4-ring Tewer of Hanol problen,
" it is necessary at scme point to move the largest
ring from its original position on peg A to peg C,
but before this can be done the three smaller
rings must be assembled in their proper order on
peg-B. ~The-problem of moving the three rings
from one peg to another may be termed a 3-ring
subproblem, and constitutes a subset of the state
space of the 4-ring problem. The 4-ring state
space contains three iscmorphic 3-ring subspaces,
for which the physical problem seolving situaticns
are different by reascn of the position of ring 4.

© 1141 & [21].

Fach subspace beccmes a subproblem when one of its

entry states is designated as the initial state,
and its exit states are designated as goal states,
Similariy, each 3-ring subspace contains three
isomorphic 2-ring subspaces for a total of nine
in the 4-ring state space; and each 2-ring sub-
space may be further decomposed-into three l-rirg
subspaces, conprising cnly three states aplece,.

‘ Note the examples in Figure 2 or 1-, 2-, and 3~
ring subspaces.

Each n-ring subproblem, as well as the main

problem, admits of a symmetry automerphisn mapping a

goal state of the n-ring preblem cnto the cenjugate
goal state which corresponds to transferring the

n rings to the other open peg. Were the three
pegs of the Tower of Hanoi hoard to ke arrarged at
+he corners of an eguilateral triangle {(as are the
people in the Tea Ceremony},.the symmetry auto-
morphism would represent the gecmetric operation
of reflection about the altitudes of an equilateral
triangle. - :

Criteria are established [14]for 'non-randecm-
ness' and 'goal-directedness' of subject's paths
through the Tower of Hanoli/Tea Ceremony state
space. The number of 'turns' and 'loops’ of a
-subject’s path is compared with the "turns' and
tloops' of a random path of the same Jength gen-
erated in the Tower of Hanoi/Tea Ceremony state
space.. A 'metric' is defined also, a function
‘of the number of states the subject's curxent
state is distant from the goal state. —If this
function is non-increasing over the subject's
path, the path is sald to be 'goal-directed'.
This same metric is established to measure goal
directedness within subproblems. When subgoal
'states are attained the path that exits from the
subgoal is examined to see if it also exits from
the subpreblem. The first trial of Pigure 3
decorposes the state space modulo its 2-ring sub-
problems - each 2-ring subprecblem is solved in
the minimum number of steps, while the 3-ring
subproblem is mot. This represents a. 2-ring
'episode’ in the problem's solution. This same
trial shows two congruent paths through isomorphic
3-ring subproblems. -

The problem sclving data of 45 adult subjects
solving the Tower of Hanoi and 21 adult subjects
solving the Tea Ceremony problems are reported in
Except for Hypothesis 3 (the pro-
duction of congrusent paths through isomorphic
subproblems), all the hypotheses are supported by
the data. Especially strong (near 100%) is the
support of the special role played by subgoal
states within the problem (Eypothesis 1b).
of 2ll the subjects have at least one problem
-so}ving “episcde' with B0% showing two or more of
the three theoretically possible 'episodes’
(Bypothesis 2). 52% of all subjects in the
studies interrupted a path and immediately pro-
duced a path segment that was the symmetric con-
jugate of the interrupted path (Hypothesis 4).
7his new path was often the minimum step soluticn
path.

86%
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Trial 2:~ -
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Figure 3 The behavior of a subject solving the
4~ring Tower of Hanoi problem.

N Figure 3 pictures the actual paths through
the state space generated by cne adult subject
solving the Tower of Hanol problem. This sub-
ject's behavior happened te confcrm to all four
proposed hypctheseas. The paths are both goal-
and subgoal-directed, and exit from the subproblem
whenever a subgoal state is entexed. The first
two trials contain 7 instances {in 7 attempts) of
minimum solution of the 2-xing subproblem, while
.,the 3-ring subproblem has not yet been solved by
the shortest path - a 2-ring 'episode’. Trial 1
il}ustrates -two congruent non-minimum paths
'threough 3-ring subproblems. Finally, trial 2 is
interrupted and trial 3, the shortest solution
path, follows as the image of trial 2 under the
symetry automorphism that exchanges pegs B and C.

Trial lim—0o
Trial 2:— — —
Trizl 3:veesei-

Trial 4‘—%——v

The behavior of a subject solving the

Figure 4

. Structure.

Figure 4 pictures the paths of an adult sub-
ject solving the Tea Ceremony problem. The paths
within each problem are goal-directed, and when-
ever a subproblem®s gozl state is entered it is
left by the unigue path that also leaves the sub-
problem space. From the beginning the problem
iz reduced modulo its 2-task subproblems, since
during the prebiem sclving 12 of 14 of the 2-task
subproblems are solved in the minimum mumber of
steps. After the first 3-task subproblem, there
is an 'episode' in which 5 of 6 of all furiasr 3-
task subproblems are solved in the minimum number
of steps but the entire problem (4-task} is not,
reducing the prcblem by its 3-task subprcblems.
The first and second trials begin with congruent
paths (non-minimum) through 3-task subpreblems.
The third trial is interrupted, and its symmetric
conjugate - which solves the picblem - is produced
in the fourth trial.

In summary, the present paper suggests one
natural way to make the strategy/structure
distinction. We let the structure of a preblenm
refer to the formal properties of its state space
representation, such as its syrmmetyy autcnorphisms
and possible subproblem deccmpositions. We con-—
sider the subject's possikle cognitive styuctures
to include the conservation operations, syrnetXy
and subproblem decompositions that the subject
can _&pply to the problem situakion. An exanvle
of this in the Tower of Hanoi is the ability of a
subject to solve all 2-ring subprcblems, no matter
where they are in the context of the problem, in
the mpinimum number of steps. These stractures
determine the states that the subject treats as
distinct and those treated as equivalent. These
may change during problem solving, leading to an
effective reduction of the state space. A sub-
ject's behavior may be faithfully mapped as- long
as the state space representation that is utilized
Dy the researcher is sufficiently detailed, in
that it deoes not treat states as egquivalent which
‘the subject treats as distinct.

We let the term strategy refer to particular
rules or procedures for taking steps within the
state space. Different individuals may erxploy
different strategies in sclving the same problem,
and the same individual may employ different
strategies in solving different but isomorphic
problems. The present paper does neot explain
strategies per se, but hypothesizes that even in
the context of different strategies, certain pat-
terns of behavior tend *co occur as a conseguence
:of the structure of the problenm.

There are several obvious, very broad direct-
ions for further experimental research including
broadening the domains both of problems and subject
populations considered. Another area of investi-.
gation is ‘transfer' effects in the kehavior of a
subject sclving different problems having related
The secand aunthar has in fact a study
in progress ccnsidering transfer acreoss isomorphic
problem situations [21]1; Egan and Grene [3] and
Reed, Ernst, and Banerji {8] have examined transfer
effects in problems of hemomerphic structure.
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